Block ciphers

What is a block cipher?
Block ciphers: crypto work horse

Canonical examples:
1. 3DES: $n = 64$ bits, $k = 168$ bits
2. AES: $n = 128$ bits, $k = 128, 192, 256$ bits
$R(k_1,m)$, $R(k_2,m)$, $R(k_3,m)$, $R(k_n,m)$

$R(k,m)$ is called a round function

for 3DES (n=48), for AES-128 (n=10)
Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Block/key size</th>
<th>Speed (MB/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC4</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>Salsa20/12</td>
<td></td>
<td>643</td>
</tr>
<tr>
<td>Sosemanuk</td>
<td></td>
<td>727</td>
</tr>
<tr>
<td>3DES</td>
<td>64/168</td>
<td>13</td>
</tr>
<tr>
<td>AES-128</td>
<td>128/128</td>
<td>109</td>
</tr>
</tbody>
</table>
Abstractly: PRPs and PRFs

- **Pseudo Random Function (PRF)** defined over \((K,X,Y)\):
 \[
 F : K \times X \rightarrow Y
 \]
such that exists “efficient” algorithm to evaluate \(F(k,x)\)

- **Pseudo Random Permutation (PRP)** defined over \((K,X)\):
 \[
 E : K \times X \rightarrow X
 \]
such that:
 1. Exists “efficient” deterministic algorithm to evaluate \(E(k,x)\)
 2. The function \(E(k, \cdot)\) is one-to-one
 3. Exists “efficient” inversion algorithm \(D(k,y)\)
Running example

- **Example PRPs**: 3DES, AES, ...

 - AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$
 - 3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- Functionally, any PRP is also a PRF.
 - A PRP is a PRF where $X=Y$ and is efficiently invertible.
Secure PRFs

- Let $F: K \times X \to Y$ be a PRF.

 $$\begin{align*}
 \text{Funs}[X,Y]: & \quad \text{the set of all functions from X to Y} \\
 S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} & \subseteq \text{Funs}[X,Y]
 \end{align*}$$

- **Intuition**: a PRF is secure if a random function in $\text{Funs}[X,Y]$ is indistinguishable from a random function in S_F.

$$\text{Size } |K| \quad \text{Funs}[X,Y] \quad \text{Size } |Y|^{|X|}$$
Secure PRFs

- Let $F: K \times X \rightarrow Y$ be a PRF

\[
\text{Funs}[X,Y]: \text{ the set of all functions from } X \text{ to } Y
\]

\[
S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y]
\]

- **Intuition:** a PRF is **secure** if a random function in Funs[X,Y] is indistinguishable from a random function in S_F
Secure PRPs (secure block cipher)

- Let $E: K \times X \rightarrow Y$ be a PRP

 Perms[X]: the set of all **one-to-one** functions from X to Y

 $S_F = \{ E(k,\cdot) \text{ s.t. } k \in K \} \subseteq \text{Perms}[X,Y]$

- **Intuition**: a PRP is secure if a random function in Perms[X] is indistinguishable from a random function in S_F
Let $F: K \times X \rightarrow \{0,1\}^{128}$ be a secure PRF.

Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0^{128} & \text{if } x=0 \\ F(k, x) & \text{otherwise} \end{cases}$$

- No, it is easy to distinguish G from a random function
- Yes, an attack on G would also break F
- It depends on F
An easy application: \(\text{PRF} \Rightarrow \text{PRG} \)

Let \(F: K \times \{0,1\}^n \rightarrow \{0,1\}^n \) be a secure PRF.

Then the following \(G: K \rightarrow \{0,1\}^nt \) is a secure PRG:

\[
G(k) = F(k,0) \parallel F(k,1) \parallel \cdots \parallel F(k,t-1)
\]

Key property: parallelizable

Security from PRF property: \(F(k, \cdot) \) indist. from random function \(f(\cdot) \)
End of Segment
Block ciphers

The data encryption standard (DES)
Block ciphers: crypto work horse

Canonical examples:
1. 3DES: $n = 64$ bits, $k = 168$ bits
2. AES: $n = 128$ bits, $k = 128, 192, 256$ bits
Block Ciphers Built by Iteration

$R(k,m)$ is called a round function for 3DES (n=48), for AES-128 (n=10)
The Data Encryption Standard (DES)

- Early 1970s: Horst Feistel designs Lucifer at IBM
 key-len = 128 bits ; block-len = 128 bits
- 1973: NBS asks for block cipher proposals.
 IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard
 key-len = 56 bits ; block-len = 64 bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES

Widely deployed in banking (ACH) and commerce
Given functions \(f_1, \ldots, f_d : \{0,1\}^n \rightarrow \{0,1\}^n \)

Goal: build invertible function \(F : \{0,1\}^{2n} \rightarrow \{0,1\}^{2n} \)

In symbols:
\[
\begin{align*}
R_i &= f_i(R_{i-1}) \oplus L_{i-1} \\
L_i &= R_{i-1}
\end{align*}
\]
Claim: for all \(f_1, \ldots, f_d: \{0,1\}^n \rightarrow \{0,1\}^n\)

Feistel network \(F: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}\) is invertible

Proof: construct inverse
Claim: for all f_1, \ldots, f_d: $\{0,1\}^n \rightarrow \{0,1\}^n$

Feistel network $F: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is invertible

Proof: construct inverse
Inversion is basically the same circuit, with \(f_1, \ldots, f_d \) applied in reverse order.

- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES.
“Thm:” (Luby-Rackoff ‘85):

\[
f: K \times \{0,1\}^n \rightarrow \{0,1\}^n \text{ a secure PRF}
\]

\[
\Rightarrow 3\text{-round Feistel } F: K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n} \text{ a secure PRP}
\]
DES: 16 round Feistel network

\[f_1, \ldots, f_{16}: \{0,1\}^{32} \rightarrow \{0,1\}^{32}, \quad f_i(x) = F(k_i, x) \]

To invert, use keys in reverse order
The function $F(k_i, x)$

S-box: function $\{0,1\}^6 \rightarrow \{0,1\}^4$, implemented as look-up table.
The S-boxes

\[S_i : \{0,1\}^6 \rightarrow \{0,1\}^4 \]

<table>
<thead>
<tr>
<th>Middle 4 bits of input</th>
<th>(S_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0001 0010 0011 0100 0101 0110 0111</td>
<td>1000 1001 0110 1101</td>
</tr>
<tr>
<td>0010 1100 0100 0001 0111 1010 1011 0110</td>
<td>1000 0101 0011 1111</td>
</tr>
<tr>
<td>0110 1011 0010 1100 0100 0111 1101 0001</td>
<td>1111 0100 0011 1001</td>
</tr>
<tr>
<td>1010 0100 0010 1001 1011 0110 1000 1111</td>
<td>1010 0101 0110 0000</td>
</tr>
<tr>
<td>1110 1011 1000 1100 0111 0001 1110 1001</td>
<td>0000 1001 1010 0100</td>
</tr>
</tbody>
</table>

Where the outer bits are:

- 00: 1011 1011
- 01: 1111 1101
- 10: 0101 0110
- 11: 1110 0111
Example: a bad S-box choice

Suppose:

$$S_i(x_1, x_2, ..., x_6) = (x_2 \oplus x_3, \ x_1 \oplus x_4 \oplus x_5, \ x_1 \oplus x_6, \ x_2 \oplus x_3 \oplus x_6)$$

or written equivalently:

$$S_i(x) = A_i \cdot x \pmod{2}$$

We say that S_i is a linear function.
Example: a bad S-box choice

Then entire DES cipher would be linear: \(\exists \) fixed binary matrix \(B \) s.t.

\[
\text{DES}(k,m) = 64 \cdot B \cdot m_k \oplus B \cdot m_{k_1} \oplus B \cdot m_{k_2} \oplus \ldots \oplus B \cdot m_{k_{16}} = c \quad \text{(mod 2)}
\]

But then: \(\text{DES}(k,m_1) \oplus \text{DES}(k,m_2) \oplus \text{DES}(k,m_3) = \text{DES}(k, m_1 \oplus m_2 \oplus m_3) \)
Choosing the S-boxes and P-box

Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after $\approx 2^{24}$ outputs) \cite{BS89}

Several rules used in choice of S and P boxes:

- No output bit should be close to a linear func. of the input bits
- S-boxes are 4-to-1 maps
 -
 -
 -
End of Segment
Block ciphers

Exhaustive Search Attacks
Exhaustive Search for block cipher key

Goal: given a few input output pairs \((m_i, c_i = E(k, m_i))\) \(i=1,..,3\) find key \(k\).

Lemma: Suppose DES is an ideal cipher

\[
(2^{56} \text{ random invertible functions } \pi_0, ..., \pi_{2^{56}} : \{0,1\}^{64} \rightarrow \{0,1\}^{64})
\]

Then \(\forall m, c\) there is at most one key \(k\) s.t. \(c = \text{DES}(k, m)\)

Proof: with prob. \(\geq 1 - \frac{1}{256} \approx 99.5\%\)

\[
\sum_{k' \in \{0,1\}^{56}} \Pr\left[\text{DES}(k, m) = \text{DES}(k', m)\right] \leq 2^{56} \cdot \frac{1}{2^{64}} = \frac{1}{2}
\]
Exhaustive Search for block cipher key

For two DES pairs \((m_1, c_1=\text{DES}(k, m_1)), (m_2, c_2=\text{DES}(k, m_2))\)

unicity prob. \(\approx 1 - 1/2^{71}\)

For AES-128: given two inp/out pairs, unicity prob. \(\approx 1 - 1/2^{128}\)

\(\Rightarrow\) two input/output pairs are enough for exhaustive key search.
DES challenge

msg = “The unknown messages is: XXXX … “

CT = c_1 c_2 c_3 c_4

Goal: find \(k \in \{0,1\}^{56} \) s.t. \(\text{DES}(k, m_i) = c_i \) for \(i=1,2,3 \)

1997: Internet search -- 3 months

1998: EFF machine (deep crack) -- 3 days (250K $)

1999: combined search -- 22 hours

2006: COPACOBANA (120 FPGAs) -- 7 days (10K $)

⇒ 56-bit ciphers should not be used !! (128-bit key ⇒ \(2^{72} \) days)
Strengthening DES against ex. search

Method 1: **Triple-DES**

- Let $E : K \times M \rightarrow M$ be a block cipher

- Define $3E : K^3 \times M \rightarrow M$ as

\[3E((k_1, k_2, k_3), m) = E(k_1, D(k_2, E(k_3, m))) \]

\[k_1 = k_2 = k_3 \Rightarrow \text{single DES} \]

For 3DES: key-size = $3 \times 56 = 168$ bits. 3x slower than DES.

(simple attack in time $\approx 2^{118}$)
Why not double DES?

• Define $2E((k_1,k_2), m) = E(k_1, E(k_2, m))$

Attack: $M = (m_1, ..., m_{10})$, $C = (c_1, ..., c_{10})$.

• step 1: build table.

sort on 2nd column

Find (k_1, k_2) s.t. $E(k_1, E(k_2, M)) = C$

Equivalently:

$E(k_2, M) = D(k, C)$

256 entries
Meet in the middle attack

Attack: \(M = (m_1, \ldots, m_{10}) \), \(C = (c_1, \ldots, c_{10}) \)

- **step 1:** build table.
- **Step 2:** for all \(k \in \{0, 1\}^{56} \) do:

 test if \(D(k, C) \) is in 2\(^{nd}\) column.

 if so then \(E(k^i, M) = D(k, C) \Rightarrow (k^i, k) = (k_2, k_1) \)
Meet in the middle attack

\[\text{Time} = 2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) < 2^{63} \ll 2^{112}, \quad \text{space} \approx 2^{56} \]

Same attack on 3DES:
\[\text{Time} = 2^{118}, \quad \text{space} \approx 2^{56} \]
Method 2: DESX

$E : K \times \{0,1\}^n \rightarrow \{0,1\}^n$ a block cipher

Define EX as

$$EX\left((k_1, k_2, k_3), m \right) = k_1 \oplus E(k_2, m \oplus k_3)$$

For DESX: key-len = 64+56+64 = 184 bits

... but easy attack in time $2^{64+56} = 2^{120}$ (homework)

Note: $k_1 \oplus E(k_2, m)$ and $E(k_2, m \oplus k_1)$ does nothing !!
End of Segment
Block ciphers

More attacks on block ciphers
Attacks on the implementation

1. Side channel attacks:
 - Measure **time** to do enc/dec, measure **power** for enc/dec

2. Fault attacks:
 - Computing errors in the last round expose the secret key k

⇒ do not even implement crypto primitives yourself ...
Given many inp/out pairs, can recover key in time less than 2^{56}.

Linear cryptanalysis (overview): let $c = \text{DES}(k, m)$

Suppose for random k, m:

$$\Pr\left[\bigoplus_{\text{subset of msg bits}} m[i_1] \oplus \cdots \oplus m[i_r] \bigoplus \bigoplus_{\text{subset of ciphertext bits}} c[j_1] \oplus \cdots \oplus c[j_v] = \bigoplus_{\text{subset of key bits}} k[l_1] \oplus \cdots \oplus k[l_u] \right] = \frac{1}{2} + \varepsilon$$

For some ε. For DES, this exists with $\varepsilon = 1/2^{21} \approx 0.0000000477$
Linear attacks

Pr\left[m[i_1] \oplus \cdots \oplus m[i_r] \oplus c[j_j] \oplus \cdots \oplus c[j_v] = k[l_1] \oplus \cdots \oplus k[l_u] \right] = \frac{1}{2} + \varepsilon

Thm: given $1/\varepsilon^2$ random $(m, c=\text{DES}(k, m))$ pairs then

$$k[l_1, \ldots, l_u] = \text{MAJ} \left[m[i_1, \ldots, i_r] \oplus c[j_j, \ldots, j_v] \right]$$

with prob. $\geq 97.7\%$

\Rightarrow with $1/\varepsilon^2$ inp/out pairs can find $k[l_1, \ldots, l_u]$ in time $\approx 1/\varepsilon^2$.

Dan Boneh
Linear attacks

For DES, \(\varepsilon = 1/2^{21} \Rightarrow \)

with \(2^{42}\) inp/out pairs can find \(k[l_1,\ldots,l_u]\) in time \(2^{42}\)

Roughly speaking: can find 14 key “bits” this way in time \(2^{42}\)

Brute force remaining 56–14=42 bits in time \(2^{42}\)

Total attack time \(\approx 2^{43} (<<2^{56})\) with \(2^{42}\) random inp/out pairs
Lesson

A tiny bit of linearly in S_5 lead to a 2^{42} time attack.

⇒ don’t design ciphers yourself !!
Quantum attacks

Generic search problem:
Let $f : X \rightarrow \{0,1\}$ be a function.
Goal: find $x \in X$ s.t. $f(x) = 1$.

Classical computer: best generic algorithm time $= O(|X|)$

Quantum computer [Grover ’96]: time $= O(|X|^{1/2})$

Can quantum computers be built: unknown
Quantum exhaustive search

Given $m, c = E(k, m)$ define

$$f(k) = \begin{cases}
1 & \text{if } E(k, m) = c \\
0 & \text{otherwise}
\end{cases}$$

Grover \Rightarrow quantum computer can find k in time $O(|K|^{1/2})$

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$

quantum computer \Rightarrow 256-bits key ciphers (e.g. AES-256)
End of Segment
Block ciphers

The AES block cipher
The AES process

- 1997: NIST publishes request for proposal
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits
AES is a Subs-Perm network (not Feistel)
AES-128 schematic

1. ByteSub
2. ShiftRow
3. MixColumn

10 rounds

key expansion:
16 bytes \rightarrow 176 bytes

invertible

input

output
The round function

- **ByteSub**: a 1 byte S-box. 256 byte table (easily computable)

- **ShiftRows**:

- **MixColumns**
Code size/performance tradeoff

<table>
<thead>
<tr>
<th>Code size</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-compute round functions (24KB or 4KB)</td>
<td>largest</td>
</tr>
<tr>
<td>Pre-compute S-box only (256 bytes)</td>
<td>smaller</td>
</tr>
<tr>
<td>No pre-computation</td>
<td>smallest</td>
</tr>
</tbody>
</table>
Example: Javascript AES

AES in the browser:

Prior to encryption:
 pre-compute tables

Then encrypt using tables

http://crypto.stanford.edu/sjcl/
AES in hardware

AES instructions in Intel Westmere:

• \texttt{aesenc, aesenclast}: do one round of AES

 128-bit registers: \texttt{xmm1=state, xmm2=round key}

 \texttt{aesenc xmm1, xmm2} ; puts result in \texttt{xmm1}

• \texttt{aeskeygenassist}: performs AES key expansion

• Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer
Attacks

Best key recovery attack:
 four times better than ex. search \[\text{[BKR'11]}\]

Related key attack on AES-256: \[\text{[BK'09]}\]
 Given \(2^{99}\) inp/out pairs from \textbf{four related keys} in AES-256
 can recover keys in time \(\approx 2^{99}\)
End of Segment
Block ciphers

Block ciphers from PRGs
Can we build a PRF from a PRG?

Let $G: K \rightarrow K^2$ be a secure PRG.

Define 1-bit PRF $F: K \times \{0,1\} \rightarrow K$ as

$$F(k, x \in \{0,1\}) = G(k)[x]$$

Thm: If G is a secure PRG then F is a secure PRF.

Can we build a PRF with a larger domain?
Extending a PRG

Let $G: K \rightarrow K^2$.

define $G_1: K \rightarrow K^4$ as $G_1(k) = G(G(k)[0]) \parallel G(G(k)[1])$

We get a 2-bit PRF:

$F(k, x\in\{0,1\}^2) = G_1(k)[x]$
G_1 is a secure PRG

random in K^4

$G_1(k)$

$G(k)[0]$ $G(k)[1]$
Extending more

Let \(G : K \rightarrow K^2 \).

Define \(G_2 : K \rightarrow K^8 \) as \(G_2(k) = G(k)[0][0] \).

We get a 3-bit PRF.

\[
\begin{align*}
000 & \quad 001 & \quad 010 & \quad 011 & \quad 100 & \quad 101 & \quad 110 & \quad 111 \\
\end{align*}
\]
Extending even more: the GGM PRF

Let \(G: K \rightarrow K^2 \). Define PRF \(F: K \times \{0,1\}^n \rightarrow K \) as

For input \(x = x_0 x_1 \ldots x_{n-1} \in \{0,1\}^n \) do:

\[
\begin{align*}
&k \\
&\rightarrow \quad G(k)[x_0] \\
&\rightarrow \quad G(k_1)[x_1] \\
&\rightarrow \quad G(k_2)[x_2] \\
&\rightarrow \quad \cdots \\
&\rightarrow \quad G(k_{n-1})[x_{n-1}] \\
&\rightarrow \quad k_n
\end{align*}
\]

Security: \(G \) a secure PRG \(\Rightarrow \) \(F \) is a secure PRF on \(\{0,1\}^n \).

Not used in practice due to slow performance.
Secure block cipher from a PRG?

Can we build a secure PRP from a secure PRG?

- No, it cannot be done
- Yes, just plug the GGM PRF into the Luby-Rackoff theorem
- It depends on the underlying PRG
End of Segment