Probabilistic Graphical Models

Inference
MAP

Dual Decomposition Algorithm
Dual Decomposition Algorithm

\[
\bar{\theta}_i^\lambda = \theta_i(x_i) + \sum_{F : i \in F} \lambda_{Fi}(x_i) \quad \bar{\theta}_F^\lambda = \theta_F(\mathbf{x}_F) - \sum_{i \in F} \lambda_{Fi}(x_i)
\]

• Initialize all \(\lambda \)'s to be 0

• Repeat for \(t=1,2,... \)

 – Locally optimize all slaves:

 \[\mathbf{x}_F^* = \arg\max_{\mathbf{x}_F} \mathbf{x}_F \bar{\theta}_F^\lambda(\mathbf{x}_F) \]
 \[\mathbf{x}_i^* = \arg\max_{\mathbf{x}_i} \mathbf{x}_i \bar{\theta}_i^\lambda(\mathbf{x}_i) \]

 – For all \(F \) and \(i \in F \)

 \[\lambda_{Fi}(x_{Fi}^*) := \lambda_{Fi}(x_i^*) - \alpha_t \]
 \[\lambda_{Fi}(x_{Fi}^*) := \lambda_{Fi}(x_{Fi}^*) + \alpha_t \]

\[x_{Fi}^* \neq x_i^* \]
Dual Decomposition Convergence

• Under weak conditions on α_t, the λ's are guaranteed to converge

 $-\sum_t \alpha_t = \infty$
 $-\sum_t \alpha_t^2 < \infty$

• Convergence is to a unique global optimum, regardless of initialization
At Convergence

• Each slave has a locally optimal solution over its own variables (in its scope)
• Solutions may not agree on shared variables
• If all slaves agree, the shared solution is a guaranteed MAP assignment
• Otherwise, we need to solve the decoding problem to construct a joint assignment
Options for Decoding x^*

- Several heuristics
 - If we use decomposition into spanning trees, can take MAP solution of any tree
 - Have each slave vote on X_i's in its scope & for each X_i pick value with most votes
 - Weighted average of sequence of messages sent regarding each X_i

- Score θ is easy to evaluate for any x^*

- Best to generate many candidates and pick the one with highest score
Upper Bound

- \(L(\lambda) \) is upper bound on \(\text{MAP}(\theta) \)

\[
\text{score}(x) \leq \text{MAP}(\theta) \leq L(\lambda)
\]

\[
\text{MAP}(\theta) - \text{score}(x) \leq L(\lambda) - \text{score}(x)
\]
Important Design Choices

• Division of problem into slaves
 – Larger slaves (with more factors) improve convergence and often quality of answers

• Selecting locally optimal solutions for slaves
 – Try to move toward faster agreement

• Adjusting the step size α_t

• Methods to construct candidate solutions
Summary: Algorithm

• Dual decomposition is a general-purpose algorithm for MAP inference
 – Divides model into tractable components
 – Solves each one locally
 – Passes “messages” to induce them to agree

• Any tractable MAP subclass can be used in this setting as a slave

Daphne Koller
Summary: Theory

• Formally: a subgradient optimization algorithm on dual problem to MAP

• Provides important guarantees
 – Upper bound on distance to MAP
 – Conditions that guarantee exact MAP solution

• Even some analysis for which decomposition into slaves is better
Summary: Practice

• **Pros:**
 - Very general purpose
 - Best theoretical guarantees
 - Can use very fast, specialized MAP subroutines for solving large model components

• **Cons:**
 - Not the fastest algorithm
 - Lots of tunable parameters / design choices